BIG DATA UNIT-1 Introduction

feedback/corrections: vibha@pesu.pes.edu

VIBHA MASTI

Modelling Pipeline

Model: human construct to abstractify real-world systems / phenomena

Big Data Themes

- 1. Manage very large amount of data (eg: google search engine)
- 2. Extract value and knowledge (eg: recommendation system)

MACHINE TRANSLATION

- · Translate from one language to another
- · Two approaches: traditional approach & big data approach

Traditional approach

- rule-based
- understanding of structure

· Big data

- domain knowledge not necessary
- patterns analysed using large amounts of data
- https://www.google.co.in/amp/s/www.wired.com/2008/06/pb-theory/amp

Domain knowledge required?

- https://towardsdatascience.com/machine-translation-a-short-overview-91343ff39c9f
- Peter Norvig : https://youtu.be/yvDCzhbjYWs

- Domain knowledge needed to check validity of model

PITFALLS

1. Spurious Correlation

- · C→A & C→B, does A→B
- Eg: stork population & human birth rate hidden variable: available nesting area

2. Gaps in the Data

· Due to selection bias, covenience

Error Checking of Models

- Nate Silver's book : The Signal and the Noise : Why so Many Predictions
 Fail but some Don't weather forecasting with human adjustment
- · All data: signal + noise
- Train on training set, estimate error on testing set
- · Purely empirical estimation of errors

1BM - 4 V's of Big Data

https://www.sliceofbi.com/2015/09/basics-of-big-data.html?m=1

1. Volume

- · Old style data:
 - fixed format / schema
 - clean data
 - consistent data
 - batch processing, not real-time
- · 44x increase from 2009 to 2020
- · Generated by financial services, energy, media etc.

- · BD: automated
- 2. Variety
 - · variety of formate (video, photo, text etc)
 - · Static data & streaming data
 - \cdot Extract knowledge \rightarrow link various sources together
- 3. Velocity
 - · So much data generated very fast
 - · Real-time input and response

- 4. Veracity
 - How trustworthy the data is jaccuracy of data clack thereof is due to hashtags, typos, abbreviations)

DATA FORMATS

1. Structured

- · described in a matrix/data structure format
- · relational databases (SQL)

2. Unstructured

- · no fixed structure for the data
- · documents, tweets, videos

3. Semi-Structured

- · combination of the two
- · emails, XML

Data Architecture Design

Layer 5 Data consumption	Export of datase to cloud, web e	Export of datasets to cloud, web etc.		Datasets usages: IPs, BIs, knowledge discovery		Analytics (real-time, near real-time, scheduled batches), reporting, visualization	
Layer 4 Data processing	Processing tech ology: MapRedu Hive, Pig, Spa	n- Ice, time, scheduled rk batches or hybrid		real- uled /brid	Synchronous or asynchronous processing		
Layer 3 Data storage	Consideration (historical or ling) formats, confrequency of data, patterne and data confrequency	ns of types ncremental), mpression, f incoming s of querying nsumption		doop dis e system If-manag f-healing Mesos o	tributed (scaling, jing and), Spark, or S3	NoSQL data stores – Hbase, MongoDB, Cassandra, Graph database	
Layer 2 Data ingestion and acquisition	Ingestion using Extract Load and Transform (ELT)	Data semantics (such as replace, append, aggregate, compact, fuse)		Pre- (va transf tra reg	processing alidation, formation or nscoding) juirement	Ingestion of data from sources in batches or real time	
Layer 1 Identification of internal and external sources of data	Sources for ingestion of data	Push or pull of data from the sources for ingestion		Data types for database, files, web or service		Data formats: structured, semi- or unstructured for ingestion	

TI

Data Storage for Traditional and Big Data

File Systems & Distributed File Systems

Exercise

1. Consider that you have ITB of data. Compare the time taken to read data in both the cases below:
(i) Single machine (4 1/0 channels, 100 mbps each)
(ii) 10 machines (each having 4 1/0 channels, 100 mbps each)

$$\frac{10^{6}}{4 \times 10^{2}} = \frac{10^{4}}{4} = 2.5 \times 10^{3} = 2500 \text{ secs} = 41 \text{ min } 40 \text{ sec}$$

$$\frac{(ii)}{10 \times 4 \times 10^2} = \frac{10^3}{4} = 250 \text{ secs = 4 mins 10 sec}$$

HDFS - Hadoop Distributed File System

- HDFS inspired by Google File System (GFS) 2003
- · HDFS is a DFS. Open Source
- · Origin: Apache Nutch search engine
- HDFS is DFS designed for storing very large files with streaming data access patterns Cfor analytics), running on clusters of commodity hard ware
 - Large Files: MB/GB/TB file sizes; PB clusters operational
 - Read mostly data: write once, read many most efficient
 - * time to read whole dataset more imp than latency to read first record
 - * each analysis involves large portion of dataset
 - Commodity hardware: inexpensive hardware
 * rack servers Cpresent in CCBD)

Exercise

1. If you want to store a file on disk, what constitutes data & metadata?

Data: file contents Metadata: Owner, creation time, file size, modified time, access rights, location on disk

2. What are their access patterns? How often do you think each one would be accessed during a normal file read?

Data: accessed every time a file is opened & a line is read Metadata: accessed every time a file is opened

3. How large are they, comparitively? Why is this important?

Data typically larger in size than metadata and is accessed more often than metadata

Scale Up ve Scale Out

- · Scale up: buy a new machine with new specs
- · Scale out: replicate resources to improve speed (better)

Commodity Servers - Issues

- · Reliability is not very good
 - Solution: redundancy data stored on 3 machines (so that if one fails, one can make a copy and another can serve)

Master-Slave Architecture

1. Writing a File

Write using pipeline — recursive request to make copies
 Direct write: iterative — requires more processing; not done (needs to send multiple copies)

Client receives Data Node list for each block

Rack 9

- Client picks first Data Node for each block
- Client reads blocks sequentially BRAD HEDLUND .com

HDFS Architecture

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Namenode

- · Manages directories, file system namespace
- · Access rights regulation
- · Open, Close, rename files
- · Mapping of blocks to data nodes
- · Handles block failure
- · Transaction log
- · Metadata in memory

https://hrouhani.org/hdfs-file-system/

FSImage

- · Serialised version of file system tree
- · Not updated on every write Cavoids recopying of data)
- · Stores filename, access time, no. of blocks, blocks

Edit Logs

- · Every write written to edit log
- · Flushed and synced after every transaction
- · Only appends allowed, no modifies

Namenode Memory Requirements

- · Rule of thumb: IGB for I million blocks
- · Eg: 200 node cluster, 24 TB/node, 128 MB block size, replication factor 3, space=?
- no. of blocks = 200 x 24 x 2²⁶ = ~ 12 million = ~12,000 MB memory
 128x3 = size of block is 3x due to replication

Why is Block Size 128 MB?

- · Read time = seek time t transfer time + rotational latency
- Reduce seek time to improve performance of read; larger
 block sizes => transfer time >> seek time
- · CPUs became faster, began waiting
- · .: Hadoop V2, block size = 28 MB

read such that read time >> seek time

- Rack Rack 2
- · Each block stored in 3 locations (copied) so that if one fails, one can copy while the other serves

Namenode Failure

- · when name node fails, no requests can be handled
- · Solutions will have trade-offs based on use case
- One common solution: 2 NNs Active NN & Standby NN
 both sharing a common HD
- · HD stores FS Image and edit logs
- When client writes data to a DN, it communicates to both NNs
- IF ANN fails, SNN changes state and becomes active (ANN) and can start updating shared HD
- Only the currently active NN can make updates to the shared HD

- · How does SNN realise that ANN has failed?
- ANN & SNN both send periodic heartbeat messages to a third party (called zookeeper)
- · If zookeper does not receive consecutive heartbeats from ANN, tells SNN to transition into ANN

- Heartbeat not received can be due to problem at source or problem in network
- · Zookeeper cannot determine where the problem is

- If problem is in the network and ANN is fine, but ZK has told SNN that it is now active, two NNs will be updating the HD at the same time
- · Solution: enforce that only one NN can write to HD
- Fencing: currently active NN virtually fences the HD from the other NN by blocking the network CSTONITH-shoot the other node in the head)
- · What if hard disk fails?

Example in HDFS

PES1UG19C5565@PES1UG19C5565:~/dfsdata/namenode	/current \$ l
edits_000000000000000001-0000000000000000000	edits_000000000000001613-0000000000000001749
edits_00000000000000003-0000000000000000307	edits_000000000000001750-0000000000000001789
edits_000000000000000308-000000000000000309	edits_000000000000001790-0000000000000001833
edits_000000000000000310-0000000000000000311	edits_000000000000001834-0000000000000002332
edits_00000000000000312-0000000000000000313	edits_000000000000002333-000000000000002376
edits_00000000000000314-0000000000000000314	edits_00000000000002377-000000000000002464
edits_000000000000000315-000000000000000315	edits_00000000000002465-0000000000000002510
edits_00000000000000316-000000000000000870	edits_000000000000002511-0000000000000002634
edits_00000000000000871-0000000000000001281	edits_000000000000002635-000000000000002636
edits_00000000000001282-0000000000000001283	edits_000000000000002637-0000000000000002638
edits_000000000000001284-0000000000000001285	edits_00000000000002639-000000000000002640
edits_000000000000001286-0000000000000001369	edits_000000000000002641-0000000000000002642
edits_000000000000001370-000000000000001453	edits_00000000000002643-0000000000000002644
edits_000000000000001454-0000000000000001455	edits_00000000000002645-0000000000000002758
edits_000000000000001456-000000000000001457	edits_00000000000002759-0000000000000002798
edits_000000000000001458-0000000000000001459	edits_000000000000002799-000000000000003147
edits_000000000000001460-000000000000001461	edits_inprogress_000000000000003148
edits_000000000000001462-0000000000000001463	fsimage_000000000000002798
edits_000000000000001464-0000000000000001465	fsimage_000000000000002798.md5
edits_00000000000001466-000000000000001467	fsimage_000000000000003147
edits_00000000000001468-00000000000000001604	fsimage_000000000000003147.md5
edits_000000000000001605-0000000000000001610	seen_txid
edits_000000000000001611-0000000000000001612	VERSION

BLOCKS IN HDFS

- File sizes vary (can be larger than a single disk in the network)
- · Replication of blocks
- · Shadoop fsck -files -blocks lists blocks that make up a file in the filesystem

```
Example:
```

```
seek = 10 ms
```

```
transfer rate = 100 MBPS
```

We need to make seek time = 1.1. of transfer time (~100 MB)

- Hadoop VI default 64 MB
- Hadoop' V2 default 128 MB

MAP REDUCE PROGRAMMING MODEL

- · Fundamental way to process large amounts of data
- · Google, OSDI '04 (Operating System Design and Implementation)
- Runs on large set of commodity machines in a distributed manner, with checks for failures (high availability)
- Consider very large text file distributed over two machines and we need to search for word "BigData" in the file

- · Approach 1: run search in parallel on both machines more efficient
- · Approach 2: use 3rd machine to copy file (merge) and run grep — involves large network transfer

Distributed Grep Solution

- less to transfer over network •
- · grep executed on all machines, merged together and the results are sent over the network map

reduce

- · Map: convert input to key-value pairs
- Reduce: merges intermediate key-value pairs to form final key-value pairs
- · How to parallelise the merge problem?
 - Assign keys to a particular machine based on rules
 - Eq: A-M on one machine and N-2 in another (range partitions)
 - which reducer should receive which keys
 - Default Hadoop: Hash Partitioning (r = no. of reducers)
 - Range partitioning suffers from Exemness problems

· Each reducer gets a partition

Ensures that all similar keys are aggregated at the same reducer. Each mapper has the same partition function

- Can add reducer code can be puched to each mapper as a combiner (separate function)
- Combiner works on mapper like a mini reducer on the mapper
 eg. can convert idli-[1,1] to idli-[2]
- For the count use case, intermediate k/v will have a list of 1's, but it is dependent on the application
- Each reducer must be responsible for a certain key levery
 key assigned to a reducer; reducer can be responsible for
 multiple keys)
- · Input to reducer pizza [1,1] (from 2 diff machines)

Map Reduce Programming Model

- Map: $(K_{in}, V_{in}) \rightarrow list(K_{int}, V_{int})$
- Reduce: (K_{int}, list(V_{int}))→list(K_{out}, V_{out})

Mapper for Word Count

Reducer for word count

```
public static class IntSumReducer
        <u>extends Reducer<Text, IntWritable, Text, IntWritable> {</u>
    private IntWritable result = new IntWritable();
        Key,List (value)
    public void reduce(Text key,[Iterable<IntWritable> values]
        Context context
        ) throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
}
```

MR framework (Hadoop) implemented to do all the neavylifting

Driver Program

•

```
public static void main(String[] args) throws Exception {
             Configuration conf = new Configuration();
             String[] otherArgs = new GenericOptionsParser(conf, args).
                                       getRemainingArgs();
             if (otherArgs.length < 2) {
               System.err.println("Usage: wordcount <in> [<in>...] <out>");
               System.exit(2);
             }
             Job job = new Job(conf, "word count");
             job.setJarByClass(WordCount.class);
                                                                    Set Mapper
             job.setMapperClass(TokenizerMapper.class);
can have
                                                                       and
combiner
             job.setReducerClass(IntSumReducer.class);
                                                                  Reducer class
  here
             job.setOutputKeyClass(Text.class);
             job.setOutputValueClass(IntWritable.class);
             for (int i = 0; i < otherArgs.length - 1; ++i) {</pre>
               FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
             }
             FileOutputFormat.setOutputPath(job,
               new Path(otherArgs[otherArgs.length - 1]));
             System.exit(job.waitForCompletion(true) ? 0 : 1);
           }
```

a: what will be mapper and reducer? What will be keys?

Input: file (line Number, line) records and pattern

Output: lines matching a given pattern

Map: for line in file: if line matches pattern: Write line to context

Reducer: no job or identity function

keys: pattern

Q: sort function: mapper? reducer? partition?

Input: (key, value) records

Output: same records sorted by key

Map: identity contput of mapper always sorted by key)

Reducer: identity (concat over multiple reducers)

Partition: pick p(k) such that p(k) < p(k2) if k, ck2

Hadoop Flow

- User submits job
 - input data, MR program, config info (# of reducers, mem to be allocated)
- · Job split into smaller map tasks and reduce tasks
- · Job splits 1/P data into smaller chunks called splits
- · One map task per split; parallelisation

1. Single Reducer Task

Figure 2-3. MapReduce data flow with a single reduce task

2. Multiple Reducers

Figure 2-4. MapReduce data flow with multiple reduce tasks

MR Split Size Considerations

- · Smaller splits => more parallelism
- · Small split size advantages
 - large # of splits
 - increased parallelism
 - increased load balancing
- · Small split size disadvantages
 - overhead of managing splits and map task creation
 - less time to execute job (this dominates)

· Optimal split size = HDFs block size (128 MB on v2)

Map output

- · Written to local disk, not to HDFS
- · Local data

Failure of Map Task

· If node fails while performing map and before sending data to reduce, it is re-run on another map node

Reduce Tasks

- · O/P stored in HDFS
- · Sorted map O/Ps have to transfer over network
- · I copy stored on reduce node where reduce task happens
- · Copies stored on off-rack nodes

High Level View

Combiners

Q: Suppose

- We have a 24B file
- Split size is 128 MB
- we have 4 disks

i) How many splits are there?

= 16 splits

(ii) How many splits per disk)

16 (iii) Now many map tasks? iv) Now many map tasks per node? 4 w now many reduce tasks? user specified

Q:

Far out in the uncharted backwaters of the unfashionable end of the Western Spiral arm of the Galaxy lies a small unregarded yellow sun. Orbiting this at a distance of roughly ninety-eight mD

Block 2

Block 1

llion miles is an utterly insignificant little blue-green planet whose ape-descended life forms are so amazingly primitive that they still think digital watches are a pretty neat idea

- You run Word count using Hadoop on this data
- We know each block is an input split
- And each split is processed by a different mapper
- Do we get the right result?
- How will you solve this?

NO; word is split (millim) across blocks .

- · First & last words are issue
- · From second block, start computing from second word LEDR separator)
- Map 1 processes last word of first Wock (million) by looking for end-of-record (EDR) separator

map: (K1, V1) → list(K2, V2) reduce: (K2, list(V2)) → list(K3, V3)

JOB MANAGEMENT

- · How to allocate machines for map & reduce tasks?
- · Who allocates and monitors tasks?

single point of failure master node

worker	worker	worker		worker
node	node	node	•	node

Hadoop 1.0 Job Management

- · Job tracker (master-slave)
- Client submits job to job tracker, job tracker sends mapper and reducer jobs to available nodes
- · Nodes have task trackers that can receive tasks from the job tracker

Job tracker handles fault tolerance, cluster resource management and scheduling allocation

failures

Jssues

- 1. Limits scalability Conly 4000 nodes per cluster)
- 2. Availability single point of failure
- 3. Resource utilisation problems
- 4 Limitation in running only MR applications

YARN

Yet Another Resource Negotiator
 MR and other tasks can use YARN for resources

· From R3

Figure 4-2. How YARN runs an application

Data Locality in Map Reduce

- Best if map task runs on same node as the input data's location (in HDFS)
- If all nodes hosting input data are busy, looks for a free map slot on a node in the same rack as one of the blocks
- · Occasionally, inter-rack network transfer required (off-rack node)

Figure 2-2. Data-local (a), rack-local (b), and off-rack (c) map tasks

jab 3

ed submitted job 2 submitted

job 1 submitted

- · Each user gets own pool (default)
- · Single job → full cluster
- Free task slots given to jobs in a fair way Ceach user gets fair share)
- · Long & short jobs
- Scheduler ensures that a single user does not hog the cluster by submitting too many jobs
- Custom pools: guaranteed minimum capacities with map/reduce slots
- · Fair Scheduler supports preemption

2. CAPACITY SCHEDULER

- · Certain number of queues Clike pools in Fair Scheduler)
 - allocated capacity (eq: max 301)
 - can be hierarchial
 - FIFO within each queue
- https://www.slideshare.net/Hadoop_Summit/w-525hall1shenv2

Capacity Scheduler

- · Cannot use free spare capacity even if it exists
- · Break up clusters into smaller clusters

<u>Handling</u> Failures

- What can fail
 - task

 - app manager resource manager node manager

1. Task Failure

Due to runtime exceptions	 JVM reports error back to parent application master
Hanging tasks	 Progress updates not happening for 10 mins Timeout value can be set.
Killed tasks	Speculative duplicates can be killed
Recovery	• AM tries restarting task on a different node

2. Application Master Failure

When can failure occur?	Due to hardware or network failures
How to detect for failures?	 AM sends periodic heartbeats to Resource Manager
Restart	 Max-attempts to restart application Default = 2

3. Node Manager Fail

Benefits of YARN

- · YARN manages very large cluster at Yahoo
 - Scalable
 - Flexible CHadoop, Storm, Spark in same cluster using YARN)
- · Read

https://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/

8: A 1000 node YARN cluster has no jobs running. Two pools are configured with max of 50% of the resources. A new job requiring 600 nodes is submitted and on starting consumes all 600 nodes. Which YARN scheduler is active?

- · FIFO scheduler or fair Scheduler
- · can use entire clucter

&: Will the failure of task result in failure of the entire job?

· No it will be restarted

Q: What are speculative duplicates?

 Tasks started when AM determines that there is a slow running task

- Monitor M, & M2. If M2 is not processing fast enough, M2' created
- · If M₂² does better, M₂ is killed
- · If M2 does better, M2 is killed