
Introduction

BIG DATA
UNT - 1

feedback/corrections : vibha@pesu.pes.edu VIBHAMASTI

https://towardsdatascience.com/machine-translation-a-short-overview-91343ff39c9f

https://www.google.co.in/amp/s/www.wired.com/2008/06/pb-theory/amp

https://youtu.be/yvDCzhbjYWs

Modelling Pipeline

Input data > Model > Analysis

Model : human construct to abstractify real-world systems / phenomena

Big Data Themes

1. Manage very large amount of data ceg: google search engine)
2. Extract value and knowledge leg: recommendation system)

MACHINE TRANSLATION

• Translate from one language to another

° Two approaches : traditional approach Ee big data approach

• Traditional approach
- rule - based
-

understanding of structure

• Big data
- domain knowledge not necessary
-

patterns analysed using large amounts of data
-

• Domain knowledge required?
-

- Peter Norvig :

- Domain knowledge needed to check validity of model

PITFALLS

1. Spurious correlation

• (→ A 9 (→ B ,
does A → B

• Eg : stork population 4 human birth rate hidden variable : available

nesting area

2. Gaps in the Data

• Due to selection bias
,
covenience

Error checking of Models

° Nate Silver's book : the signal and the Noise : Why So Many Predictions
Fail but some Don't weather forecasting with human adjustment

• All data : signal + noise

• Train on training set
,
estimate error on testing set

•

Purely empirical estimation of errors

 https://www.sliceofbi.com/2015/09/basics-of-big-data.html?m=1

IBM 4 V 's of Big Data

1- Volume

° Old style data :
- fixed format / schema
- clean data

- consistent data

- batch processing , not real - time

• 44 ✗ increase from 2009 to 2020

• Generated by financial services, energy , media etc.

•

BD : automated

2. Variety

• variety of formats (video
, photo, text etc.)

• Static data 4 streaming data

• Extract knowledge > link various sources together

3. Velocity

° So much data generated very fast

• Real- time input and response

4. veracity

• How trustworthy the data is ; accuracy of data clack

thereof is due to hashtags, typos, abbreviations)

DATA FORMATS

1. Structured
• described in a matrix/ data structure format

• relational databases (SQL)

2. Unstructured
• no fixed structure for the data

• documents
,
tweets

,
videos

3. Semi - Structured

• combination of the two

• emails
,
XML

Data Architecture Design

Tl

Data storage for Traditional and Big Data

IT

case study: working of Google Search Engine
•

Page rank : sort pages by relevance Cpopularity) of page
-

initially took 5 days to compute

• Treats web as a graph

page rank computation

crawling
slow

(multi
step parses for

thread) links → indexing

DB of links

Filesystems g Distributed Filesystems

track t spindle

:÷€⇐¥
sectors

: i

c4kB7;*.:!!É_
:p :
::::÷i--
I
✓
rotation

arm assembly

• Read time depends on

d) seek time (position rlw head on track)
- depends on current track 4 next track
-

mechanical

- dominating delay
- scheduling algorithm determines

in rotational latency (position sector under head)
-

avg: half full rotational time

iii) block transfer time
- depends on electronics - fast

,
fixed

° File systems store mapping of files to blocks

• DFS : manages files on multiple machines

- over LANs and WANS

Exercise

1. Consider that you have ITB of data
. Compare the time

taken to read data in both the cases below :

d) Single machine 141/0 channels , 100 mbps each?
Lii) 10 machines Leach having 41/0 channels

,
100 mbps each)

d) 41,0¥ = 1¥ = 2.5×103 = 2500 secs = 41min40sec

Lii> 1€
10×4×102

= 1¥ = 250 secs = 4 mins to see

HDFS - Hadoop Distributed File system

° HDFS inspired by Google File System CGFS) 2003

• HDFS is a Dfs
, Open source

•

Origin : Apache Nutch search engine

• HDFS is DFS designed for storing very large files with streaming
data access patterns (for analytics), running on clusters of

commodity hardware
-

Large files : MB /GB/TB file sizes ; PB clusters operational

- Read mostly data : write once , read many most efficient
* time to read whole dataset more imp than latency to read

first record

* each analysis involves large portion of dataset

- Commodity hardware : inexpensive hardware
* rack servers (present in CCBD)

Exercise

1 . If you want to store a file on disk
,
what constitutes data 4

metadata?

Data : file contents

metadata: owner
,
creation time

, file size, modified time , access rights ,
location on disk

2
. What are their access patterns ? How often do you think each one

would be accessed during a normal file read?

Data : accessed every time a file is opened q a line is read

metadata : accessed every time a file is opened

3. How large are they , comparitively ? Why is this important?

Data typically larger in size than metadata and is accessed

more often than metadata

central

NAMENODE

!"""""eDistributed CN) workers

DATA NODE DATA NODE DATA NODE

- 1 ,

↳it②
③

Scale up vs scale out

• Scale up : buy a new machine with new specs
• Scale out : replicate resources to improve speed (better)

commodity servers - Issues

•

Reliability is not very good
- Solution : redundancy data stored on 3 machines Cso that

if one fails
,
one can make a copy and another can serve)

master-Slave Architecture

1. Writing a file

Fig 3-4 , R3

• write using pipeline recursive request to make copies
• Direct write : iterative requires more processing; not done
[needs to send multiple copies)

https://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/

2- Reading a File

←
tries first

00
- if I fails

,
5
,

then 6

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

https://hrouhani.org/hdfs-file-system/

HDFS Architecture

Namenode
°

Manages directories, file system namespace
• Access rights regulation
-

Open , Close , rename files
•

Mapping of blocks to data nodes
• Handles block failure
• Transaction log
• Metadata in memory

FSImage
• serialised version of file system tree

° Not updated on every write cavoids recopying of data)
• Stores filename

,
access time

,
no . Of blocks

,
blocks

Edit Logs
• Every write written to edit log
• Flushed and synced after every transaction
° Only appends allowed, no modifies

Read combines

data from both

rn

FSImage edit. log

directory filet bl

structure files bo

^

S L

read-only
merged periodically } secondary

NAMENODE

to get new FSImage handles merging

Namenode Memory Requirements

• Rule of thumb : 1GB for 1 million blocks

•

Eg: 200 node cluster
,
24 TB /node, 128 MB block size

, replication
factor 3

, space
=?

• no . Of blocks = 200×24×220
=

~ 12 million = ~ 12,000 MB memory

128×30c- size of block is 3x due to replication

Why is Block size 128 MB?

• Read time = seek time + transfer time + rotational latency

• Reduce seek time to improve performance of read ; larger
block sizes ⇒ transfer time >> seek time

° CPUs became faster
, began waiting

°

.

'

. Hadoop V2 , block size = 128 MB

seek time : costliest time
← •→

read such that read time >> seek time

switch switch

RI R2 } 243 onsame rack

R3

Rack 1 Rack 2

• Each block stored in 3 locations (copied) so that if one

fails
,
one can copy while the other serves

Namenode Failure

• when name node fails
,
no requests can be handled

• Solutions will have trade - offs based on use case

• One common solution: 2 NNS Active NN q standby NN
both sharing a common HD

• HD stores FS Image and edit logs

• When client writes data to a DN
,
it communicates to

both NNS

• If ANN fails
,
SNN changes state and becomes active CANN)

and can start updating shared HD

• Only the currently active NN can make updates to the
shared HD

active standby

NN NN

communicates
>

updates
>

communicates
'

y
,

shared
HD

client fsimage
edit -10g

write
COPY copy
~ →

> DN DN - - . DN

3 copies

• How does SNN realise that ANN has failed ?

• ANN Ee SNN both send periodic heartbeat messages to a

third party (called zookeeper)

• If Zookeper does not receive consecutive heartbeats from ANN
,

tells SNN to transition into ANN

z%uÉD
n r

heartbeat heartbeat

active standby

NN NN

www.unicot
"

>

updates
,

i.

communicates y
,

shared
HD

client fsimage
edit -10g

copy copywrite
~ →

> DN DN - - . DN

3 copies

• Heartbeat not received can be due to problem at source

or problem in network

• Zookeeper cannot determine where the problem is

• If problem is in the network and ANN is fine
,
but 2k

has told SNN that it is now active
,
two NNS will be

updating the HD at the same time

• Solution : enforce that only one NN can write to HD

• Fencing : currently active NN virtually fences the HD from

the other NN by blocking the network CSTONITH- shoot the

other node in the head)

° What if hard disk fails ?

Secondary namenode

• Primary NN can focus on serving requests

• Secondary NN tasked with merging FSImage with edits

•

secondary NN keeps a copy of Primary NN metadata

copy

copy

updated
FSImage

%hadoop fsck -files –blocks

Example in HDFS

BLOCKS IN HDFS

• File sizes vary can be larger than a single disk in the

network)

• Replication of blocks

• lists blocks that make up a

file in the filesystem

Example :
seek = 10ms

transfer rate = 100 MBPS

We need to make seek time = 1% of transfer time C- 100

MB)

- Hadoop v1 default 64 MB

- Hadoop V2 default 128 MB

MAP REDUCE PROGRAMMING MODEL

• Fundamental way to process large amounts of data

• Google , OSDI '04 (Operating System Design and Implementation)

• Runs on large set of commodity machines in a distributed
manner

,
with checks for failures (high availability)

• Consider very large text file distributed over two machines

and we need to search for word "

BigData
"
in the file

• Approach 1 : run search in parallel on both machines

more efficient

•

Approach 2 : use 3rd machine to copy file (merge? and run

grep involves large network transfer

Distributed Grep solution

• Less to transfer over network

•

grep executed on all machines
, merged together and the

results are sent over the network

map reduce
- -

Eg: Find the number of restaurants offering each item

• Map : convert input to key-value pairs

• Reduce : merges intermediate key-value pairs to form final

key-value pairs

• How to parallel ise the merge problem ?
-

Assign keys to a particular machine based on rules

- Eg: A -M on one machine and N -2 in another (range
partitions)

- Which reducer should receive which keys
- Default Hadoop: Hash Partitioning (r = no . of reducers)
- Range partitioning suffers from skewness problems

• Mappers accept input klv pair and emits intermediate

klv pairs

° All mappers have same partitioning function

• Each reducer gets a partition

Q : show map - reduce for word count cease- insensitive)

to - I

be -1 ?
be-2 A.m

or-1

not -1 > or -1
to - I > not - ,

N - Z

be -1 § to -2

• Note : if M1 has
"
to be or to

"

,
the map looks like

to - [1,1T , be - [I] , or
- [I]

(K , V)→list(K , V)

(K , list(V))→list(K , V)

• Can add reducer code can be pushed to each mapper as

a combiner (separate function)

• Combiner works on mapper like a mini reducer on the

mapper
-

eg: can convert idli - [1,11 to idli - [21

• For the count use case
,
intermediate klv will have a list

of 1 's
,
but it is dependent on the application

• Each reducer must be responsible for a certain key (every
key assigned to a reducer; reducer can be responsible for

multiple keys)

• Input to reducer pizza [1,13 (from 2 diff machines)

MapReduce Programming Model

° Map : in in int int

o Reduce : int int out out

Mapper for word count

→ break sentence
like into words

reading frm/
Stalin

Reducer for word count

☐ MR framework (Hadoop) implemented to do all the

heavylifting

Driver Program

can have

combiner
-3

here

Q : what will be mapper and reducer ? What will be keys?

Input : file ClineNumber, line) records and pattern

Output : lines matching a given pattern

map: for line in file :

if line matches pattern :
write line to context

Reducer : no job or identity function

keys : pattern

Q : sort function : mapper ? reducer? partition?

Input :(key , value) records

output : same records sorted by key

map : identity (output of mapper always sorted by key)

Reducer : identity cconcat over multiple reducers)

Partition : pick pck) such that plk ,) < pckz) if kickz

Hadoop Flow

° User submits job
- input data , MR program , config info C# of reducers

,
mem

to be allocated)

• Job split into smaller map tasks and reduce tasks

• Job splits UP data into smaller chunks called splits

• One map task per split ; parallel isatin

i. Single Reducer Task

g.

context
sort by

d uey

(aka shuffle)

↳

key-2C]

2. Multiple Reducers

each bucket

✓ dedicated to reducer

MR Split size considerations

• Smaller splits ⇒ more parallelism

• Small split size advantages
- large # of splits
- increased parallelism
- increased load balancing

• Small split size disadvantages
- overhead of managing splits and map task creation

- less time to execute job 4-his dominates)

• Optimal split size = HDFS block size (128 MB on v2)

Traditional Compute

Big Data : move compute to machines

Map output
• Written to local dish

,
not to HDFS

• Local data

Failure of Map task
• If node fails while performing map and before sending
data to reduce

,
it is re-run on another map node

Reduce tasks

☐ OIP stored in HDFS

• Sorted map 01ps have to transfer over network

• I copy stored on reduce node where reduce task happens
• Copies stored on off - rack nodes

High level view

Shuffling example

closer look at Map

Combiners

D: Suppose
- We have a 2GB file
- split size is 128 MB
-

we have 4 disks

d) How many splits are there?

2×1024/128 = 2
"

/ 27--24

= 16 splits

Lii> How many splits per dish?

16/4--4 splits / disk

Iii) How many map tasks? 16

civ) How many map tasks per node? 4

a) HOW many reduce tasks? user specified

Q:

:

• No ; word is split across blocks (million?

• First 4 last words are issue

• From second block
,
start computing from second word

CEOR separator)

• Map 1 processes last word of first block (million) by

looking for end- of-record LEOR) separator

JOB MANAGEMENT

• HOW to allocate machines for map 4 reduce tasks?
• Who allocates and monitors tasks?

single point
of failure

master <

node

worker worker worker worker

node node node
- - -

node

Hadoop 1.0 Job Management
• Job tracker (master-slave)

• Client submits job to job tracker
, job tracker sends mapper

and reducer jobs to available nodes

°

Nodes have task trackers that can receive tasks from the

job tracker

failures
←

• Job tracker handles fault tolerance
,
cluster resource

management and scheduling
t
availability

t allocation

Issues
1. Limits scalability (only 4000 nodes per cluster)

2. Availability single point of failure
3. Resource utilisation problems
4. Limitation in running only MR applications

YARN

• Yet Another Resource Negotiator
• MR and other tasks can use YARN for resources

YARN Architecture

•

Application master manages jobs from within node

• Node manager manages node (all tasks on a node)

YARN working

• From R3

Data Locality in MapReduce

• Best if map task runs on same node as the input data's
location (in HDFS)

° If all nodes hosting input data are busy , looks for a free

map slot on a node in the same rack as one of the

blocks

• Occasionally , inter - rack network transfer required coff - rack

node)

• From R3

fcheduling in YARN

• Earlier versions FIFO scheduler

- each job used entire cluster

- jobs had to wait for turn

• Balance between production (periodic) jobs and ad-hoc

jobs
• configured in config file

1. FAIR SCHEDULER

• Jobs placed in pools

CR3)

https://www.slideshare.net/Hadoop_Summit/w-525hall1shenv2

• Each user gets own pool (default)

• Single job → full cluster

• Free task slots given to jobs in a fair way [each user

gets fair share)

• Long q short jobs

• Scheduler ensures that a single user does not hog the
cluster by submitting too many jobs

• custom pools : guaranteed minimum capacities with map/ reduce
slots

• Fair scheduler supports preemption

2. CAPACITY SCHEDULER

• certain number of queues (like pools in Fair scheduler)
- allocated capacity ceg : Max 3017
- can be hierarchical
- FIFO within each queue

0

• cannot use free spare capacity even if it exists

° Break up clusters into smaller clusters

Handling Failures

• What can fail
- task

-

app manager
-

resource manager
- node manager

1. Task Failure

2. Application Master Failure

https://hadoop.apache.org/docs/current/hadoop- yarn/hadoop-yarn-site/ResourceManagerHA.html

3. Node Manager Fail

4. Resource Manager Failure

• Zookeeper : manages cluster (coordination b/w machines ;
distributed locking , heartbeats)

• RM : within cluster
,
allocates resources

0

https://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/

A 1000 node YARN cluster has no jobs running.
Two pools are configured with max of 50% of
the resources. A new job requiring 600 nodes
is submitted and on starting consumes all 600
nodes. Which YARN scheduler is active?

Will the failure of task result in failure
of the entire job?

What are speculative duplicates?

Benefits of YARN

• YARN manages very large cluster at Yahoo

- Scalable

- Flexible (Hadoop , Storm , Spark in same cluster using YARN?

• Read

D:

• FIFO scheduler or Fair scheduler

• can use entire cluster

Q:

• No it will be restarted

Q :

• Tasks started when AM determines that there is a slow

running task

Speculative Duplicates

M
,

M

RM # M,
-

Mz Nz
records

Mz
-

time

Mi ↳

I
speculative
duplicate

• Monitor M
, he Mz . If Mz is not processing fast enough ,

Ma
'
created

• If Ma
'
does better

, Mz is killed

• If Mz does better
,
Mi is killed

